Comparing environmental and genetic variance as adaptive response to fluctuating selection.

نویسندگان

  • Hannes Svardal
  • Claus Rueffler
  • Joachim Hermisson
چکیده

Phenotypic variation within populations has two sources: genetic variation and environmental variation. Here, we investigate the coevolution of these two components under fluctuating selection. Our analysis is based on the lottery model in which genetic polymorphism can be maintained by negative frequency-dependent selection, whereas environmental variation can be favored due to bet-hedging. In our model, phenotypes are characterized by a quantitative trait under stabilizing selection with the optimal phenotype fluctuating in time. Genotypes are characterized by their phenotypic offspring distribution, which is assumed to be Gaussian with heritable variation for its mean and variance. Polymorphism in the mean corresponds to genetic variance while the width of the offspring distribution corresponds to environmental variance. We show that increased environmental variance is favored whenever fluctuations in the selective optima are sufficiently strong. Given the environmental variance has evolved to its optimum, genetic polymorphism can still emerge if the distribution of selective optima is sufficiently asymmetric or leptokurtic. Polymorphism evolves in a diagonal direction in trait space: one type becomes a canalized specialist for the more common ecological conditions and the other type a de-canalized bet-hedger thriving on the less-common conditions. All results are based on analytical approximations, complemented by individual-based simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments.

Both evolution and ecology have long been concerned with the impact of variable environmental conditions on observed levels of genetic diversity within and between species. We model the evolution of a quantitative trait under selection that fluctuates in space and time, and derive an analytical condition for when these fluctuations promote genetic diversification. As ecological scenario we use ...

متن کامل

Evolution in changing environments: modifiers of mutation, recombination, and migration.

The production and maintenance of genetic and phenotypic diversity under temporally fluctuating selection and the signatures of environmental changes in the patterns of this variation have been important areas of focus in population genetics. On one hand, periods of constant selection pull the genetic makeup of populations toward local fitness optima. On the other, to cope with changes in the s...

متن کامل

Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to p...

متن کامل

Environmental variation, fluctuating selection and genetic drift in subdivided populations.

Although there have many studies of the population genetical consequences of environmental variation, little is known about the combined effects of genetic drift and fluctuating selection in structured populations. Here we use diffusion theory to investigate the effects of temporally and spatially varying selection on a population of haploid individuals subdivided into a large number of demes. ...

متن کامل

Assessment of genetic variability, heritability and association of plant attributes with lint yield and fiber quality in advanced lines of cotton (Gossypium hirsutum L.)

Information on genetic variability and heritability of plant attributes and their correlation with lint yield and fiber quality is important for planning breeding and selection strategies for prediction of genetic gains in cotton breeding programs. For these purpose, a field experiment was carried out using randomized complete block design with four replications in 2016 and 2017 at Hashem-Abad ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 65 9  شماره 

صفحات  -

تاریخ انتشار 2011